MULTIMODAL HATE SPEECH DETECTION WITH EXPLAINABILITY

*Atul Saju Sundaresh, *Fayas Ahamed F, *Manoj Krishna D, *Prasanth M, **Dr. Sindhu S

*UG Scholar, **Professor, Department of Computer Science and Engineering, N.S.S College of Engineering, Palakkad

PROBLEM STATEMENT METHODOLOGY RESULT & ANALYSIS CONCLUSION

e Hate speech 1n social media 1s an increasing problem that can 5 e The proposed Multimodal model achieved a validation accuracy
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Explainable Al

e Models provide powerful predictions while being opaque and

offering little transparency, this 1s known as the black box

problem.

e There 1s a lack of trust due to the hidden feature of the decisions

made.

e The lack of information about when the model fails or succeeds

text and 1mages, improving model adaptation to new hate

and the inability to detect errors and correct them may cause
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3 - e ROC-AUC score of 0.765 indicates strong ability to distinguish e censoring
Data ' e Model Enhancement and Scalability : Optimize the model for

hate speech and F1 score of 0.471 suggests a moderate balance

scalability and enhancement to handle diverse online content.

e Our objective 1s to detect hate speech with high precision using Fig 1 : General Architecture between precision and recall.

multimodal approach.
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